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ABSTRACT
Although metal detectors remain the workhorses of humanitarian demining, it is well
established that the performance of both continuous wave (frequency domain) and
pulsed induction (time domain) detectors can be severely compromised by so-called
‘soil-effects’. Generally, problem soils reduce the signal-to-noise ratio and increase
the false-detection rate. In certain locations, the soil-effect is so severe as to render the
detector practically inoperable. The current study is part of an ongoing international
effort to establish and quantify the influence of soil electromagnetic properties on
the operation of metal detectors and related sensor technologies. In particular, we
examine the relative influence of soil electrical conductivity, magnetic susceptibility
and associated frequency dependence on the time domain electromagnetic (TDEM)
response of pulsed induction metal detectors and related small-scale TDEM sensors.
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INTRODUCTIO N

Despite ongoing development of novel and alternative sensor
technologies (MacDonald et al. 2003; GICHD 2006), metal
detectors remain the primary tools of humanitarian demining.
The extremely low metal content of modern landmines, how-
ever, requires that detectors operate at correspondingly higher
sensitivity with resulting vulnerability to the modulating in-
fluence of background soil conditions. Although the adverse
influences of certain soil classes are widely recognized and
acknowledged by the demining community, there has only
recently been a concerted effort to identify and establish the
degree to which specific soil electromagnetic properties are
responsible. A range of studies, both empirical and theoretical
(Guelle 2002; Billings, Pasion and Oldenburg 2003a; Billings
et al. 2003b; Borry, Guelle and Lewis 2003; Das 2004, 2006;
Bruschini 2004), has identified magnetic viscosity and the re-
lated dispersion of the magnetic susceptibility as principal
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sources of interference for time domain metal detectors. In
particular, these studies have confirmed the long-established
finding (Colani and Aitken 1966) that the time domain elec-
tromagnetic (TDEM) response for a viscous magnetic soil de-
cays with t−1 dependence compared with t−5/2 dependence
for a non-magnetic soil having finite, frequency-independent
electrical conductivity. The result is a relatively sustained and
potentially problematic background response.

Given consensus on the key role of magnetic viscosity, how-
ever, the relative influence and potential significance of elec-
trical conductivity dispersion and related chargeability are not
well understood. In fact, it emerged through an effort to estab-
lish guidelines for the prediction of soil influence on metal de-
tector performance (CEN 2008) that there is a significant lack
of clarity on the nature and relative magnitude of the associ-
ated response. Consequently, the principal aim of the present
study is to address these outstanding issues in the context
of an integrated and comprehensive assessment of soil elec-
tromagnetic influence on pulse induction metal detectors and
related small-scale TDEM systems. In particular, we employ
a range of well-established theoretical results to investigate
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and characterize the influence of soil electrical conductivity,
magnetic susceptibility and associated frequency dependence
on the TDEM response of a surface-deployed, horizontal, co-
incident coil system.

For present purposes, we ignore the obvious and significant
complexities of real-world soils and assume a uniform half-
space with specified soil electromagnetic parameters. Our aim
here is to characterize and compare the general nature and
extent of the potential influence for a representative range of
uniform soil electromagnetic conditions.

General Formulation

In general, for source current I impressed on a horizontal,
single-turn circular coil of radius a positioned at height z =
−h above a homogeneous, linear and isotropic soil half-space,
the resulting electromagnetic field comprises the following or-
thogonal electric and magnetic field components as developed
in Section 4 (equations (4.86)–(4.88)) of Ward and Hohmann
(1987)

Eφ = −iπ f μ0aI
∫ ∞

0

[
e−u0(z+h) + rTEeu0(z−h)]

× λ

u0
J1(λa)J1(λρ)dλ,

(1)

Hρ = aI
2

∫ ∞

0

[
e−u0(z+h) + rTEeu0(z−h)

]
λJ1 (λa) J1 (λρ) dλ (2)

and

Hz = aI
2

∫ ∞

0

[
e−u0(z+h) + rTEeu0(z−h)

] λ2

u0
J1 (λa) J0 (λρ) dλ. (3)

Here, Eφ , Hρ and Hz denote the azimuthal electric field, the
radial magnetic field and the vertical magnetic field, respec-
tively. J0( ) and J1( ) denote Bessel functions of the first kind
and integer orders 0 and 1, respectively and λ is the Hankel
transform variable. The consistent portion of the integrand in
brackets comprises an initial term associated with the primary
field and a second term due to the soil-related field, where

rTE = μ1u0 − μ0u1

μ1u0 + μ0u1
(4)

denotes the effective reflection coefficient, u2
k = λ2 − γ 2

k , and

γk = 2π f
[
μkεk

(
i

σk

2π f εk
− 1

)]1/2

≈ [−i2π f μkσk]
1/2 (5)

is the quasi-static propagation constant (assumes that dis-
placement currents associated with electrical permittivity ε

are negligible compared with conduction currents in connec-
tion with electrical conductivity σ at operating frequency f ),

for air (k = 0) and for soil (k = 1), respectively. For air, we
have σ 0 = 0, μ0 = 4π × 10−7 H/m and, thus u0 = λ, yielding

rTE = μ1λ − μ0u1

μ1λ + μ0u1
(6)

Soil electrical conductivity and magnetic permeability are,
in general, frequency-dependent complex parameters

σ1 = σ = σ ′ + iσ ′′

μ1 = μ = μ′ − iμ′′ (7)

The frequency-dependent voltage induced in a coaxial,
coplanar single-turn receiver coil of radius b follows as the
integral of the azimuthal electric field around the circular coil

v ( f ) =
∮

E · d	 = b
∫ 2π

0
Eφdφ (8)

or, equivalently, as the time rate of change of integrated mag-
netic flux density through the coil

v ( f ) = − ∂

∂t

∫
S

B · ds = −i2π f μ0

∫ b

0

∫ 2π

0
Hzρdφdρ. (9)

The result is

v( f ) = −i2π f μ0πabI
∫ ∞

0

[
e−u0(z+h) + rTEeu0(z−h)

]
× J1 (λa) J1(λb) dλ

(10)

and, on setting b = a, z = −h = 0, we have for coincident,
surface deployed coils

v ( f ) = −i2π f μ0πa2 I
∫ ∞

0
[1 + rTE] [J1 (λa)]2 dλ. (11)

Finally, the corresponding time-domain step response is ob-
tained by dividing the previous equation by i2π f (equivalent
to integrating the associated impulse response) and evaluating
the Fourier transform with respect to frequency

v(t) = −μ0πa2 I
∫ ∞

0

∫ ∞

−∞
[1 + rTE] ei2π f td f [J1 (λa)]2 dλ (12)

or, equivalently, by Laplace transformation with substitution
s = i2π f .

In what follows, we review a range of previously known
solutions for specific soil property models and provide a com-
parative assessment of the related influence on the TDEM
response for a small-scale, horizontal coincident-coil configu-
ration at the surface of a uniform soil half-space.

Non-magnetic, non-dispersive conductive soil

For reference, we begin with a uniform non-magnetic, non-
dispersive conductive soil. Assuming σ 1 = σ dc and μ1 = μ0,
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we have

1 + rTE = 1 + λ − u1

λ + u1
= 2λ

λ + u1
(13)

and, consequently, from equation (12)

v(t) = −μ0πa2 I
∫ ∞

0

∫ ∞

−∞

2λ

λ + u1
ei2π f td f [J1 (λa)]2 dλ (14)

with u1 = [λ2 + i2π f μ0σdc]1/2. The problem was initially
treated by Lee and Lewis (1973) and, subsequently, by Raiche
and Spies (1981). On evaluating the Laplace transform of 1/(λ
+ μ1) and redefining the integration variable λ′ = aλ, the re-
sulting solution is

v(t) = v1(t) = −2μ0
√

πaI
t

S (τ ) , (15)

where

S (τ ) =
∫ ∞

0

[
e−τλ′2 − √

πτλ′erfc
(√

τλ′)]√
τλ′ [J1

(
λ′)]2

dλ′

(16)

is an integral function of normalized time τ = t/σμ0a2, with
erfc( ) denoting the complementary error function. With sub-
stitution r = τλ′2, S(τ ) is readily evaluated numerically using
a Gauss-Laguerre quadrature rule. The result is depicted in
Fig. 1. It is observed that for τ < 0.005, S(τ ) becomes con-
stant leaving v1(t) ∝ t−1 and independent of conductivity. In

Figure 1 Function S(τ ) of normalized time τ = t/σμ0a2, displaying
t−3/2 late-time dependence (coincident coil radius a = b = 0.1 m).

particular, the early-time asymptote is v(t) = μ0aI/2t (i.e.,
limτ→0 S(τ ) = 1/4

√
π ).

More significantly, for τ > 10, S(τ ) ∝ t−3/2, yielding v(t) ∝
t−5/2. The computed response is depicted in Fig. 2 for three
values of σ dc. The absolute signal voltage is normalized for ar-
bitrary source current I (and by displaying the absolute value
of the response, we effectively chart the response for the typi-
cal case of a step-off source current). As predicted, transition
from t−1 to t−5/2 dependence occurs at a later time with in-
creasing soil conductivity. Note for σ dc = 0.1 mS/m, asymp-
totic early time t−1 dependence is particularly evident with
transition to t−5/2 dependence at approximately t = 10−10 −
10−9 s.

Employing a power series expansion for the Bessel function
in equation (16) and integrating term by term, Raiche and
Spies (1981) obtained the following late-time approximation
for S(τ )

S (τ ) =
(

1
4τ

)3/2 ∞∑
k=0

(−1)k

k!
(2k + 2)!

(k + 1)! (k + 2)! (2k + 5)

(
1
4τ

)k

.

(17)

Retaining only the first term, for k = 0, one obtains the com-
mon late-time (τ > 10) approximation

v(t) ≈ v2(t) = −μ0
√

πaI
20t

(
σμ0a2

t

)3/2

= −
√

πμ
5/2
0 σ 3/2a4 I
20

t−5/2.
(18)

The foregoing approximation v2 (t) is compared with the
previous result v1 (t) in Fig. 3 for t ≥ 10−10 s. Clearly, for the
majority of metal detectors with measurement windows in
the range of ten to several hundred microseconds, this late-
time approximation appears to be perfectly adequate.

Non-conductive, non-dispersive magnetic soil

For a non-conductive soil σ 1 = 0, we have γ 1 = 0, u1 = λ

and, consequently,

1 + rTE = 1 + μ0λ (μr − 1)
μ0λ (μr + 1)

= 1 + χ

χ + 2
(19)

where, μr = μ1/μ0 = μdc/μ0 represents the relative magnetic
permeability and χ = μr − 1 is the volume-specific magnetic
susceptibility. In particular, for a non-dispersive magnetic soil,
χ = μdc/μ0 − 1 = χdc and equation (12) yields

v(t) = −μ0πa2 I
(

1 + χdc

χdc + 2

)
δ(t)

∫ ∞

0
[J1 (λa)]2 dλ, (20)
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Figure 2 TDEM response for a horizontal, coincident-coil system on a soil half-space.
v1 – non-magnetic, non-dispersive conductive soil.
Note t−1 early-time and t−5/2 late-time dependence. Response depicted for χdc = 0.001, χdc = 0.01 and σ dc = 0.1 S/m (coincident coil radius
a = b = 0.1 m).

Figure 3 TDEM response for a horizontal, coincident-coil system on a soil half-space.
v1 – non-magnetic, non-dispersive conductive soil.
v2 – non-magnetic, non-dispersive conductive soil (late-time).
Response depicted for σ dc = 0.001, σ dc = 0.01 and σ dc = 0.1 S/m (coincident coil radius a = b = 0.1 m).

where the Dirac delta function δ(t) is defined as follows

δ(t) = 0; t �= 0∫ ∞

−∞
δ(t)dt = 1.

As anticipated, the response for a non-conductive, non-
dispersive magnetic soil is limited to an impulse at the instant
of source current termination (t = 0). There is no sustained

transient response. In practice, because detection circuitry is
designed to sample the response within one or more time-
gates with an appropriate delay (typically > 10 μs) from the
step-source termination, no signal is registered.

Das (2004, 2006) treated the more general case of coaxial,
coplanar coils at height z = −h above the air-soil interface. In
general, the corresponding secondary, soil-related response is

vs(t) = −μ0πa2 I
(

χdc

χdc + 2

)
δ(t)M(h), (21)
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Figure 4 Log-uniform complex magnetic susceptibility model. Normalized real χ ′/χdc and imaginary χ ′′/χdc components are charted as functions
of normalized frequency 2π fτχ , with log (τ2 /τ1) as parameter.

where

M(h) =
∫ ∞

0
J1 (λa) J1 (λb) e−2λhdλ

= 2

πk
√

ab

[(
1 − k2

2

)
K − E

]
(22)

represents a stand-off dependent coupling coefficient, with
k2 = 4ab/[(a+b)2+4h2] and with K and E representing com-
plete elliptic integrals of the first and second kind respectively.
For the specific case of surface-deployed (h = 0) coincident (b
= a) coils,

M(0) =
∫ ∞

0
[J1(λa)]2dλ = ∞.

Thus, in theory, for instantaneous source current termina-
tion, the impulsive response is infinite.1 In practice, of course,
the response is finite for finite termination time, finite stand-
off and practical coil configurations. The main finding, how-
ever, is that a nonconductive and non-dispersive magnetic soil
yields no sustained secondary response. The same cannot be
said for a dispersive or viscous magnetic soil.

Non-conductive, dispersive magnetic soil

As Das (2004) has demonstrated, a useful approximation for
the response over a nonconductive, dispersive magnetic soil is
obtained by generalizing the previous result for a frequency-
dependent magnetic susceptibility. In particular, a well estab-

1In theory (equations (12) and (20)), the associated primary step
response νp(t) = −μ0πa2 Iδ(t)

∫ ∞
0 [J1(λa)]2dλ is similarly impulsive

and infinite for coincident coils and independent of stand-off (h).

lished model for susceptibility dispersion of a viscous mag-
netic soil (Richter 1937; Chikazumi 1965; Lee 1984) assumes
a log-uniform distribution of grain-volume related relaxation
constants. The corresponding magnetic susceptibility is given
by

χ ( f ) = χdc

[
1 − 1

ln (τ2/τ1)
ln

(
1 + i2π f τ2

1 + i2π f τ1

)]
, (23)

where τ 1 and τ 2 denote, respectively, lower and upper band-
limits on the time-constant distribution.2 For ln τ 1 = ln τχ –
ln(τ 2/τ 1)/2, ln τ 2 = ln τχ + ln(τ 2/τ 1)/2 and in the limit τ 2/τ 1

→ 1, equation (23) reduces to the standard Debye dispersion
relation (Debye 1929)

χ ( f ) = χdc

1 + i2π f τχ

(24)

and the accompanying transient decay of magnetization is
purely exponential. In general, for an arbitrary time-constant
distribution T χ (τ ), with

∫ ∞
0 Tχ (τ )dτ = 1, we have

χ ( f ) = χdc

∫ ∞

0

Tχ (τ )
1 + i2π f τ

dτ, (25)

which yields Equation (23) for the specific 1/τ -scaled logarith-
mic time-constant distribution

Tχ (τ ) = Tχ

(
ln τ

)/
τ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, τ<τ1

1
/
τ ln (τ2/τ1), τ1 ≤ τ ≤ τ2

0, τ > τ2

.

(26)

The nature of related frequency dependence is displayed in
Fig. 4 for log(τ 2/τ 1) ranging between 0.0 (Debye, χFD ∼ 90%)

2Note: ln x ≡ loge x and log x ≡ log10 x.
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and 100.0 (χFD ∼ 2%).3 In general, together with available
empirical evidence (e.g., Dearing et al. 1996), the foregoing
model suggests that a relatively broad time-constant band-
width log(τ 2/τ 1) > 10 (χFD < 15 − 20%) is the practical
reality. Indeed, it is well established (Nagata 1961; Dunlop
and Özdemir 1997) that a relatively minute variation in the
grain volume of magnetic particles (in proximity of the sta-
ble single-domain/superparamagnetic transition) is associated
with a comparatively enormous swing in related viscous time-
constants.

Now, recognizing that for the vast majority of soils χ <<

2, we have from equation (19)

1 + rTE ≈ 1 + χ ( f )
2

(27)

and, therefore,

v(t) ≈ −μ0πa2 IM (0)∫ ∞

−∞

(
1 + χdc

2

[
1 − 1

ln (τ2/τ1)
ln

(
1 + i2π f τ2

1 + i2π f τ1

)])
ei2π f td f

(28)

from equation (12). Finally, substituting s = i2π f and applying
standard Laplace transforms yields

v(t) ≈ −μ0πa2 IM (0)
[
δ(t) − χdc

2 ln (τ2/τ1)
1
t

(
e−t/τ1 − e−t/τ2

)]
(29)

and assuming τ 1 << τ << τ 2,

v(t) ≈ −μ0πa2 IM (0)
χdc

2 ln (τ2/τ1)
1
t
. (30)

Note that in addition to an instantaneous primary impulse
associated with source current termination, magnetic viscosity
leads to a sustained transient response having t−1 dependence.
Thus, in comparison with t−5/2 late-time dependence due to
eddy currents in a non-magnetic and non-dispersive conduc-
tive soil (equation (18)), signal decay is far more gradual for
a viscous magnetic soil, resulting in a substantially enhanced
and potentially anomalous response.

In particular, Das (2006) compared the late-time response
predicted by equation (30) with that for a purely conductive
soil as per equation (18). It was observed that even for an
extreme soil conductivity of σ dc = 5 S/m, a viscous magnetic
soil with only moderate static susceptibility χdc = 0.0005 SI

3A commonly referenced measure of the frequency dependence of
magnetic susceptibility is defined as χFD = [(χLF – χHF) / χLF] ×
100, where χLF and χHF denote low-frequency and high-frequency
susceptibility measured at frequencies fL and fH, spanning a decade.
See Appendix A for the connection between χFD and common dis-
persion models.

yielded a substantially greater response at times exceeding 10
μs. We shall return to the case of a viscous magnetic soil in due
course. First, we consider the more general case of a magnetic
and conductive soil.

Non-dispersive, conductive-magnetic soil

Lee (1984) treated the common case of a soil having both finite
electrical conductivity and magnetic susceptibility. Beginning
with equation (1) and considering a single-turn coil of finite
cross-sectional radius � , a corresponding field relation was
obtained for step source current with

1 + rTE = 2μ1λ

μ1λ + μ0u1
. (31)

The corresponding time-domain response is

v(t) = −2μ0πa2 I
∫ ∞

0

∫
A

∫ ∞

−∞

2μ1λ

μ1λ + μ0u1

ei2π f t

π�2
df

× [J1(λa)]2dA dλ, (32)

where A represents the cross-sectional area of a coincident
receiver loop (conductor).

Assuming a non-dispersive soil with μ1 = 1+χdc, the in-
tegral with respect to f is evaluated by appropriate contour
integration and the integral over the cross-section of the coil
is approximated by π�2. Finally, the integral with respect to λ

is evaluated by expanding the Bessel functions as a power se-
ries and integrating term by term. For small χdc Lee obtained
the following late-time (t/σμ0a2 � 1) response by Taylor se-
ries approximation about χdc = 0 (see also Ignetik, Thio and
Westfold 1985)

v(t) = v3(t) ≈ −μ0
√

πaI
20t

(
σμ0a2

t

)3/2

− 19μ0χdc
√

πaI
280t

(
σμ0a2

t

)3/2

. (33)

Comparing this result with equation (18), it is observed
that the first term is identical to the late-time response for a
non-magnetic soil. Moreover, the second term associated with
frequency-independent susceptibility χdc is characterized by
an equivalent t−5/2 time dependence. Thus, as Lee suggested,
the response can be rewritten as

v(t) ≈ −μ0
√

πaI
20t

(
σaμ0a2

t

)3/2

= −
√

πμ
5/2
0 σ 3/2

a a4 I
20

t−5/2,

(34)

where

σa = σ

(
1 + 19χdc

14

)2/3

. (35)
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Figure 5 TDEM response for a horizontal, coincident-coil system on a soil half-space.
v1 – non-magnetic, non-dispersive conductive soil.
v2 – non-magnetic, non-dispersive conductive soil (late-time).
v3 – non-dispersive magnetic, non-dispersive conductive soil.
Response depicted for σ dc = 0.001, σ dc = 0.01 and σ dc = 0.1 S/m (coincident coil radius a = b = 0.1 m and nominal soil model parameters as
indicated).

denotes a correspondingly enhanced apparent conductivity. In
effect, the influence of non-dispersive susceptibility on the late-
time response is indistinguishable from a marginal increase in
electrical conductivity. Induced magnetization enhances the
decaying inductive field by a factor μr = μ1/μ0 = 1 + χdc. As
indicated by equation (35), however, the effect is minor for
typical soil susceptibilities and the resulting late-time response
does not deviate appreciably from that predicted by equation
(18). The related influence is illustrated in Figs 5 and 6 for
a representative range of χdc. As demonstrated in previous
sections, the principal signature of non-dispersive magnetic
susceptibility is an impulsive signal accompanying source cur-
rent termination at t = 0.

Conductive, dispersive magnetic soil

More generally, Lee (1984) considered frequency-dependent
magnetic permeability. In particular, assuming the suscepti-
bility dispersion model in equation (23) and Fig. 4, we have
the related soil magnetic permeability

μ1 = μ0

(
1 + χdc

[
1 − 1

ln (τ2/τ1)
ln

(
1 + i2π f τ2

1 + i2π f τ1

)])
, (36)

in equation (31). More specifically, Lee (1984) expanded
equation (31) via the Taylor series about (μ1 − μ0)/μ0 and
evaluated the resulting field equation via methods similar to

those employed for non-viscous permeability. The resulting
late-stage (t/σμ0a2 � 1) response is

v(t) = v4(t) ≈ −μ0
√

πaI
20t

(
σaμ0a2

t

)3/2

+ 19μ0χdc
√

πaI
280t

(
σμ0a2

t

)3/2 [
ψ (5/2)

ln (τ2/τ1)
− ln (t/τ2)

ln (τ2/τ1)

]
,

− 2μ0χdcπaI
3t ln (τ2/τ1)

(
σμ0a2

t

)
− μ0χdcaI

2t
ln (2a/�)
ln (τ2/τ1)

(37)

where the digamma function ψ(5/2) ≈ 0.703157. Note that
the initial term is consistent with equations (34)–(35), com-
prising the late-time response for a soil having apparent con-
ductivity σ a, including the influence of non-viscous magnetic
susceptibility (for τ 2/τ 1 → ∞, equation (37) reduces to equa-
tion (34)).4 The remaining terms reflect the influence of mag-
netic viscosity and related frequency-dependent permeability
as described by equation (36). In general, for practical coil ge-
ometries, coil radius a is large compared to its cross-sectional
radius � and the late-time response is ultimately dominated
by the final term with t−1 dependence, compared with t−5/2

4Related expressions (31) and (35) in Lee (1984) are not appar-
ently consistent. In particular, Lee’s equation (35) (for τ1 → 0)
appears to imply a marginally higher apparent conductivity σa =
σ (1 + 19

√
πχdc/14)2/3 than corresponding equation (31). Related

deviation is indistinguishable on the scale of current diagrams.
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Figure 6 TDEM response for a horizontal, coincident-coil system on
a soil half-space.
v1 – non-magnetic, non-dispersive conductive soil.
v2 – non-magnetic, non-dispersive conductive soil (late-time).
v3 – non-dispersive magnetic, non-dispersive conductive soil.
Response depicted for χdc = 0.00001 and χdc = 0.1 SI (coincident
coil radius a = b = 0.1 m and nominal soil model parameters as
indicated).

dependence for non-dispersive soils. Thus, as previously dis-
cussed, magnetic viscosity yields a substantially enhanced and
potentially anomalous response. The value of a/�, combined
with the electrical conductivity σ dc, magnetic susceptibility
χdc and viscous magnetic time-constants τ 1, τ 2, determine the
precise transition from t−5/2 to t−1 dependence.

The predicted response is displayed in Fig. 7 for χdc =
0.001, log (τ 2/τ 1) = 20 (χFD ≈ 10%), a/� = 100 and the
same three conductivity values in Fig. 5 and previous figures.
Decreasing the ratio a/� by a factor of 10 only marginally
reduces the predicted response. In general, with increasing
electrical conductivity, predicted transition from t−5/2 to t−1

dependence is effectively delayed as per equation (37). How-
ever, assuming typical coil dimensions for hand-held systems
and practical limits on soil electrical conductivity, the viscous
magnetic response is generally predominant within the prac-
tical measurement range (t > 10 μs). We shall return to this
issue in following discussion. First, we consider the relative
influence of specific magnetic parameters.

While magnetic dispersion is an essential condition for sus-
tained t−1 decay, Fig. 8 illustrates that the predicted response
is not as sensitive to the degree of underlying, intrinsic dis-
persion as it is to the absolute level of magnetic susceptibility.
In particular, Fig. 8(a) displays the influence of increasing the
time-constant bandwidth from log (τ 2/τ 1) = 10 (χFD > 15%)
to log (τ 2/τ 1) = 100 (χFD ≈ 2%), a representative range for
the majority of magnetic soils that are nominally viscous. It is
observed that the corresponding order of magnitude reduction
in the related response is relatively minor compared with the
effect of varying the static (low-frequency) susceptibility χdc

over a representative range spanning several orders of magni-
tude for a nominal time-constant bandwidth (Fig. 8b). Thus,
although magnetic dispersion is a prerequisite condition for
the critical transition from t−5/2 to t−1 decay rate, the onset
and level of the viscosity dominated response is more strongly
influenced by absolute magnetic susceptibility. In effect, ab-
solute susceptibility scales underlying dispersion to yield net
frequency dependence (viscosity) that can be considerable de-
spite a relatively modest χFD. Indeed, this explains the direct
influence of both absolute susceptibility and related frequency
dependence, or differential susceptibility (�χ = χLF − χHF ),
on ground reference height (GRH) for a standard calibrated
metal detector as reported by Guelle et al. (2006).

Now, returning to equation (30), it is useful to compare the
late-time approximation

v(t) = v5(t) ≈ −μ0πa2 IM(0)
χdc

2 ln (τ2/τ1)
1
t

(38)

with the foregoing result (equation (37)).
Note that in place of M(0) = ∞ as predicted by equa-

tion (22) for b = a, h = 0, equation (37) implies M(0)
= ln(2a/�)/πa. The resulting approximation is illustrated in
Fig. 9. As expected, there is excellent agreement with the
predicted t−1 response over the practical measurement range
(10 μs − 1000 μs). Again, although equation (38) hinges
on dispersive magnetic susceptibility, the expression also em-
phasizes the scaling and potentially predominant influence of
absolute susceptibility χdc (largely reflecting the composition
and concentration of the viscous soil magnetic fraction).

Equating expressions (38) and (34), we obtain the following
approximate relation

tV ≈ μ0σaa2

[ √
π

10χdc

ln (τ2/τ1)
ln (2a/�)

]2/3

(39)

for the transition time from t−5/2 to t−1 dependence for a
conductive and viscous magnetic soil. Although the resulting
expression inevitably overestimates the actual transition time,
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Figure 7 TDEM response for a horizontal, coincident-coil system on a soil half-space.
v1 – non-magnetic, non-dispersive conductive soil.
v2 – non-magnetic, non-dispersive conductive soil (late-time).
v3 – non-dispersive magnetic, non-dispersive conductive soil.
v4 – dispersive magnetic, non-dispersive conductive soil.
Note t−1 late-time dependence for the dispersive magnetic response. Response depicted for σ dc = 0.001, σ dc = 0.01 and σ dc = 0.1 S/m
(coincident coil radius a = b = 0.1 m and nominal soil model parameters as indicated).

Figure 8 TDEM response for a horizontal, coincident-coil system on a soil half-space.
v1 – non-magnetic, non-dispersive conductive soil.
v2 – non-magnetic, non-dispersive conductive soil (late-time).
v3 – non-dispersive magnetic, non-dispersive conductive soil.
v4 – dispersive magnetic, non-dispersive conductive soil.
Response depicted for τ2/τ1 = 1010, τ2/τ1 = 10100, χdc = 0.00001 and χdc = 0.1 SI (coincident coil radius a = b = 0.1 m and nominal soil
model parameters as indicated).
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Figure 9 TDEM response for a horizontal, coincident-coil system on a soil half-space.
v1 – non-magnetic, non-dispersive conductive soil.
v2 – non-magnetic, non-dispersive conductive soil (late-time).
v3 – non-dispersive magnetic, non-dispersive conductive soil.
v4 – dispersive magnetic, non-dispersive conductive soil.
v5 – dispersive magnetic, non-dispersive conductive soil (late-time).
Response depicted for σ dc = 0.001, σ dc = 0.01 and σ dc = 0.1 S/m (coincident coil radius a = b = 0.1 m and nominal soil model parameters as
indicated).

it is an adequate approximation and provides additional in-
sight into the related influence of specific soil electromagnetic
parameters. In particular, Fig. 10 illustrates the offsetting in-

Figure 10 Viscous magnetic transition time tV as a function of static
magnetic susceptibility χdc and time-constant bandwidth log (τ2/τ1)
(open symbols for log (τ2/τ1) <10). The dashed line indicates specific
tV for nominal soil model parameters as indicated.

fluence of the time-constant bandwidth log (τ 2/τ 1) and abso-
lute low-frequency susceptibility χdc.

Given well established bounds on χdc and accepting
log (τ 2/τ 1) > 10 (χFD < 15 − 20%) as an empirical lower
limit, it remains of interest to consider a practical upper limit
on the time-constant bandwidth and related implications. In
theory, so long as τ 2/τ 1 ≥ 1 remains finite, the corresponding
late-time response continues to be viscosity dominated and
displays t−1 dependence for t ≥ tV . Obviously, however, as
log (τ 2/τ 1) increases, a proportional rise in χdc is required to
maintain a given tV and related signal level. Consequently, ef-
fective magnetic viscosity ν ≈ χdc/ log (τ 2/τ 1) is the preferred
parameter5 for gauging the net influence of soil magnetic sus-
ceptibility and related viscosity.

5As a practical matter, magnetic viscosity is estimated as ν ≈
�χ /log(fH/fL), with �χ = χLF — χHF denoting the differential sus-
ceptibility measured between measurement frequencies fL and fH (see
equation (52)). In particular, for measurement frequencies spanning a
decade (fH/fL = 10), ν ≈ �χ . In contrast and owing to normalization
by χLF, related parameter χFD = (�χ /χLF) × 100 provides improved
discrimination of intrinsic dispersion related to the grain-size distri-
bution of soil magnetic content, but fails to reflect the net extent of
effective magnetic viscosity.

C© 2012 Crown in the right of Canada, Geophysical Prospecting, 1–20
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Figure 11 Viscous magnetic transition time tV as a function of coil
radius a with static conductivity σ dc as the parameter (coincident coil
radius a = b = 0.1 m and nominal soil model parameters as indicated).

Equation (39) also indicates that transition time tV scales
with the coil radius in approximate accordance with a stan-
dard quasi-static scaling relation (e.g., Frischknecht 1987)

t′
V ≈ tV

(
a′

a

)2

, (40)

where t′V denotes the viscous transition time for scaled coil
radius a′. Figure 11 displays tV as a function of coincident coil
radius a, with low-frequency conductivity σ dc as a parameter.
Trendlines are fit over the range a = 0.1 − 1.0 m. The devi-
ation (reduction) from standard squared dependence on a′/a
increases as the ratio a/� increases with decreasing coil radius.
As previously noted, however, the influence is subtle.

The corresponding scaling relation for conductivity (σ =
σ a ≈ σ dc) is

t′
V = tV

(
σ ′

dc

σdc

)
. (41)

Non-magnetic, dispersive conductive soil

Finally and of particular interest here, Lee (1981) and El-
Kailouby et al. (1995, 1997) investigated the influence of
frequency-dependent electrical conductivity on the TDEM re-
sponse of a surface-deployed coincident-coil system. Assum-
ing a non-magnetic soil, we have as per equations (4) and
(13)

1 + rTE = 1 + λ − u1

λ + u1
(42)

with u1 = [λ2 + i2π f μ0σ ( f )]1/2. Substituting equation (42)
in equation (12) and ignoring the impulsive primary response

associated with termination of the source current at t = 0,
yields the step response due to soil

v(t) = μ0πa2 I
∫ ∞

0

∫ ∞

−∞

λ − u1

λ + u1
[J1 (λa)]2 dλei2π f td f. (43)

Lee (1981) evaluated the integral with respect to λ, obtain-
ing a power series solution that is subsequently integrated
with respect to complex frequency f = Reiψ/2π via contour
integration.

Assuming a Cole-Cole model for electrical conductivity dis-
persion (Cole and Cole 1941; Pelton et al. 1978)

σ ( f ) = σdc

[
1 + m

(
[i2π f τσ ]c

1 + [1 − m] [i2π f τσ ]c

)]
, (44)

the resulting asymptotic integral solution is

v(t) = v6(t) = −μ0aI
∫ ∞

0
e−Rt sin ψ�(R)dR, (45)

where

�(R) =
∞∑

n=0

(
4 cos αn[aF (R)]2n+3(2n + 2)!

(2n + 5)!(n + 1)!n!

−2 cos βn[aF (R)]2n+224n+2n!n!
π (2n + 4)!(2n)!

)
, (46)

R is the contour integration variable and angle ψ = π /4 defines
the branch cut geometry. In addition,

F (R) =
[
μ0σdc R

(
1 + 2δ + γ 2

1 + 2 (1 − m) δ + (1 − m)2
γ 2

)1/2
]1/2

,

αn = Rt sin
(
π

/
2 + ψ

) + ψ + (2n + 3)
(
π

/
2 + ψ + φ

)/
2,

βn = Rt sin
(
π

/
2 + ψ

) + ψ + (2n + 2)
(
π

/
2 + ψ + φ

)/
2,

with

γ = (τσ R)c ,

δ = γ cos
[(

π
/

2 + ψ
)

c
]
,

η = γ sin
[(

π
/

2 + ψ
)

c
]
,

φ = tan−1

[
η

1 + δ

]
− tan−1

[
(1 − m) η

1 + (1 − m) δ

]
.

With change of integration variable r = Rt sin ψ , the re-
sponse is readily evaluated numerically employing a Gauss-
Laguerre quadrature formulation (El-Kailouby et al. 1995).
Results presented by Lee (1981) for specific Cole-Cole param-
eters, were confirmed independently by Raiche (1983) by way
of an alternative computational method. As a check on our
numerical evaluation of equation (45) the same results were
reproduced prior to investigating response characteristics on
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Figure 12 Cole-Cole complex electrical conductivity model. Normalized real σ ′/σ dc and imaginary σ ′′/σ dc components are charted as functions
of normalized frequency 2π fτσ , with Cole-Cole distribution constant c as the parameter.

the scale of hand-held sensors. In general, the response pre-
dicted by equation (45) is characterized by late-time polarity
reversal and a diminished decay rate. Specific characteristics
depend on the nature and degree of electrical dispersion.

In contrast with soil magnetic dispersion that is largely de-
termined by the grain-size distribution of mineral magnetic
content, soil electrical dispersion affecting TDEM sensors is
due to a wide range of polarization and electrochemical pro-
cesses that are influenced by an equally broad range of soil
physicochemical parameters (De Loor 1983; Olhoeft 1985).
Related relaxation/reaction rates range over several orders of
magnitude with associated time-constant distributions analo-
gous to those for magnetic dispersion.

Frequency dependence of the electrical conductivity as spec-
ified by equation (44) depends on the static value σ dc, the cor-
responding high-frequency value σ∞ (or chargeability m =
(σ∞ − σ dc)/σ∞), the Cole-Cole distribution parameter c and
reference time-constant τ σ . as illustrated in Fig. 12.

In particular, for c = 1.0, equation (44) yields the related
Debye-like dispersion relation

σ ( f ) = σ∞ − σ∞ − σdc

1 + (1 − m) i2π f τσ

(47)

and the accompanying transient decay of induced polarization
is exponential. For an arbitrary time constant distribution
Tσ (τ ), with

∫ ∞
0 Tσ (τ )dτ = 1, we obtain the general relation.

σ ( f ) = σ∞ − (σ∞ − σdc)
∫ ∞

0

Tσ (τ )
1 + (1 − m)i2π f τ

dτ. (48)

A 1/τ -scaled, logarithmic time-constant distribution having
form

Tσ (τ ) = Tσ (ln τ )/τ = 1
2πτ

sin [(1 − c)π ]
cosh [c ln(τ/τσ )] − cos [(1 − c)π ]

(49)

yields the Cole-Cole dispersion relation of equation (44). Fig-
ure 12 displays the predicted normalized frequency depen-
dence for σ dc = .01 mS/m, m = 0.3, τ 0 = 0.0001 s and for the
Cole-Cole distribution parameter c ranging between 0.01–1.0.

The late-time response predicted by equation (45) for a non-
magnetic, electrically polarizable soil is depicted in Fig. 13
(together with previous models) for three values of static con-
ductivity. Note that predicted polarity reversal occurs between
0.1–1.0 μs and that corresponding later-time decay rates are
substantially reduced compared with the t−5/2 dependence ob-
served for non-dispersive conductive soil. As Lee (1981) noted
for t/σμ0a2 > 10, the corresponding late-time response is well
approximated by retaining only the initial (n = 0) term of the
asymptotic series of equation (46). For parameters in Fig. 13,
the deviation between single-term and multi-term approxima-
tions is minimal for t ≥ 1.0 μs.

For the specific case σ dc = 0.01 S/m, Fig. 14 provides some
indication of the influence of individual Cole-Cole parame-
ters on the predicted response. For all but the most rapidly
acting polarization processes (τ σ > 10−8 s), polarity reversal
and related decay rate reduction occur later as the associated
time-constant τ σ increases (Fig. 14a). Increasing chargeabil-
ity m has, in general, the opposite effect (Fig. 14b), lead-
ing to earlier polarity reversal. Dependence on the Cole-Cole
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Figure 13 TDEM response for a horizontal, coincident-coil system on a soil half-space.
v1 – non-magnetic, non-dispersive conductive soil.
v2 – non-magnetic, non-dispersive conductive soil (late-time).
v3 – non-dispersive magnetic, non-dispersive conductive soil.
v4 – dispersive magnetic, non-dispersive conductive soil.
v6-p – non-magnetic, dispersive conductive soil (‘positive’ (normal) polarity).
v6-n – non-magnetic, dispersive conductive soil (‘negative’ (reverse) polarity).
Response depicted for σ dc = 0.001, σ dc = 0.01 and σ dc = 0.1 S/m (coincident coil radius a = b = 0.1 m and nominal soil model parameters as
indicated).

Figure 14 TDEM response for a horizontal, coincident-coil system on a soil half-space.
v1 – non-magnetic, non-dispersive conductive soil.
v2 – non-magnetic, non-dispersive conductive soil (late-time).
v3 – non-dispersive magnetic, non-dispersive conductive soil.
v4 – dispersive magnetic, non-dispersive conductive soil.
v6-p – non-magnetic, dispersive conductive soil (‘positive’ (normal) polarity).
v6-n – non-magnetic, dispersive conductive soil (‘negative’ (reverse) polarity).
Response depicted for τσ = 10−2, τσ = 10−6, m = 0.1, m = 0.7, c = 0.05 and c = 0.2 (coincident coil radius a = b = 0.1 m and nominal soil
model parameters as indicated).
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Figure 15 Polarity reversal time tR as a function of Cole-Cole con-
ductivity dispersion parameters, including reference time-constant τσ ,
distribution parameter c and chargeability m. The dashed line indi-
cates tR for nominal soil model parameters as indicated.

distribution parameter c is more complicated. For specific pa-
rameter values identified in Fig. 14(c), polarity reversal occurs
at minimum time for c ≈ 0.2 and increases for both lesser
and greater values. The general nature and relative influence
of Cole-Cole parameters on polarity reversal time tR are il-
lustrated in Fig. 15 for representative parameter ranges and
reference values as per Fig. 14.

The corresponding rate of increase in related decay rates,
following peak negative-valued response is also significant.
Related variation with Cole-Cole parameter values is dis-
played in Fig. 16. In general, it is observed that polarization
parameters have considerable and complicated influence over

the transition from polarity reversal to late-time t−5/2 depen-
dence. In particular, for specific parameter values considered,
Fig. 16 suggests that sustained response (reduced decay rate)
immediately following polarity reversal is associated with in-
creasing τ σ , moderate m and increasing c. It is also observed,
however, that the same characteristics do not generally lead
to earlier phase reversal.

Finally, it is important to appreciate that response charac-
teristics are also dependent on coil radius and conductivity,
with polarity reversal occurring later as the product of coil
radius and conductivity increases. Figure 17 displays polarity
reversal time tR as a function of coincident coil radius a, with
low-frequency conductivity σ dc as a parameter. Lower curves
are for c = 0.5 and upper curves for c = 0 with remaining pa-
rameters as per the reference model in Fig. 14. Results imply
a generalized scaling relation

t′
R = tR

(
a′

a

)2(1−c)

, (50)

where, t′
R denotes the reversal time for scaled coil radius a′.

Note that for an infinitely broad time-constant distribution
(c = 0), equation (50) reduces to the standard quasistatic
relation t′

R = tR(a/a′)2 with squared dimensional dependence
(e.g., Frischknecht 1987) as equation (45) reverts to equa-
tions (15)–(18) for non-polarizable soil with low- frequency
conductivity σ = 2σ dc/(2 − m) (Lee 1981). The corresponding
scaling relation for conductivity follows as

t′
R = tR

(
σ ′

dc

σdc

)1−c

. (51)

The principal finding, however, is that induced electri-
cal polarization produces signal polarity reversal and related

Figure 16 Influence of Cole-Cole conductivity dispersion parameters on the related TDEM decay rate following polarity-reversal. The predicted
time dependence of TDEM response charted as a function of time with reference time-constant τσ , chargeability m and distribution constant c
as parameters (coincident coil radius a = b = 0.1 m and nominal soil model parameters as indicated).
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Figure 17 Polarity reversal time tR as a function of coil radius a
with static conductivity σ dc as a parameter and for two values of
the Cole-Cole time-constant distribution parameter c = 0.0 and c =
0.5 (coincident coil radius a = b = 0.1 m and nominal soil model
parameters as indicated).

decay rate reduction within the typical measurement range
for metal detectors and related small-scale TDEM sensors.
Moreover, it is evident on the basis of theory-predicted results
in foregoing Figs 8, 13 and 14 that specific soil electromag-
netic parameters can potentially combine to yield an effective
response that is dominated by electrical polarization despite
limited magnetic dispersion.

S U M M A R Y

The performance of pulse induction metal detectors and re-
lated hand-held sensors is significantly influenced by soil elec-
tromagnetic properties. However, in contrast with frequency-
domain (FDEM) systems that are principally affected by
absolute levels of soil magnetic susceptibility and electrical
conductivity, TDEM systems are sensitive to related disper-
sion and associated viscosity.

In particular, where soils incorporate a substantial mag-
netic component having viscous susceptibility, the late-time
response is generally enhanced with t−1 decay rate, compared
with t−5/2 for a non-magnetic or non-viscous soil.

With few exceptions, the model of soil magnetic dispersion
described by equations (23) and (36) and leading to equations
(37) and (38) (t−1 response), appears to be generally supported

by available data.6 In particular, recent multi-frequency mea-
surements of soil magnetic susceptibility (West and Bailey
2005; Preetz and Igel 2005; Cross 2008) are largely consistent
with following approximate relations (for 1/2πτ 2 << f <<

1/2πτ 1, τ 1 << t << τ 2)

χdc

log (τ2/τ1)
= ∂χ ′( f )

∂ log f
= 2χ ′′( f )

π log e
= − 1

H0

∂M(t)
∂ log t

= v (52)

(Mullins and Tite 1973; Dabas, Jolivet and Tabbagh 1992),
where the right-most relation defines magnetic viscosity ν as
the rate of change of time-dependent magnetization M(t) nor-
malized by primary source field H0.

The general validity of foregoing relations and well-
established empirical limits on χFD reflect natural grain-size
variation and imply a correspondingly broad time-constant
distribution (log (τ 2/τ 1) > 10). It is also observed that the net
magnitude of soil magnetic viscosity depends on both the ex-
tent of underlying dispersion (grain-size/time-constant distri-
bution) and the absolute susceptibility (composition and con-
centration) of soil magnetic content (i.e., νc ≈ χdc/log (τ 2/τ 1)).

Significantly, while the two factors are commonly related, it
is decidedly more common to encounter a soil having elevated
magnetic susceptibility and limited viscosity, than a substan-
tially viscous soil with low susceptibility. The explanation is
that substantial viscosity (χFD > 2%) is largely attributable
to a significant fine-grained singledomain/superparamagnetic
fraction that generally carries an anomalously elevated intrin-
sic magnetic susceptibility (Maher 1988; Forster, Evans and
Heller 1994; Dearing et al. 1996). In contrast, a soil incor-
porating a substantial concentration of stable single-domain
or multi-domain magnetic material can possess considerable
magnetic susceptibility with limited or negligible viscosity.

In theory, only finite magnetic dispersion is required to pro-
duce the sustained and characteristic t−1 response. However,
where magnetic dispersion is limited (χFD < 2%), related sig-
nificance is increasingly dependent on the level of associated
susceptibility (i.e., concentration of related viscous magnetic
content) to support the related signature. Where viscous mag-
netic content is limited and related susceptibility is low, there
is increasing potential for the associated signature to be over-
shadowed by the background t−5/2 conductive response (i.e.,
tV , given by equation (39) exceeds the effective measurement
time). Clearly, in the limiting case of non-dispersive mag-
netic susceptibility, no amount of associated magnetic content
yields t−1 dependence and whatever level of susceptibility only

6Dabas et al. (1992) note that a limited number of samples display
significantly different response characteristics.
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produces an effective enhancement of electrical conductivity
and related response as per equations (34)–(35).

Notably, findings also demonstrate that appreciable dis-
persion of soil electrical conductivity can produce anomalous
and sustained response characteristics within the typical mea-
surement range of hand-held TDEM systems. In particular,
significant electrical chargeability yields characteristic signal
polarity reversal and time-dependent decay rate reduction.
Numerical modelling on the basis of equations (45)–(46) pre-
dicts t−3/2 − t−5/2 dependence. Most significantly, the results
suggest that for soils with sufficient chargeability, related in-
duced polarization could potentially dominate the TDEM re-
sponse for soils having limited magnetic viscosity.

In practice, however and on the basis of limited available
data (e.g., Ogilvy and Kuzmina, 1972; Mehran and Aru-
lanandan 1977; Iliceto, Santarato and Veronese 1982; Olhoeft
1985, 1987) it is anticipated that the requisite level of electri-
cal conductivity dispersion is relatively rare. Assuming (as a
minimum condition) that predicted reversal time tR must pre-
cede viscous transition time tV (equation (39)), comparison of
Figs 10 and 15 indicates that for nominal model parameters,
required overlap is limited. However, the potential does exist,
predictably for low magnetic viscosity (large log(τ 2 /τ 1)) with
low susceptibility (small χdc), and for high electrical charge-
ability (large m, large c) with high conductivity (large σ dc).

Additional work is required to characterize the nature and
range of electrical conductivity dispersion in soils. In particu-
lar, it is noted that much of available data is based on gated
time-domain (galvanic) chargeability measurements and could
potentially underestimate the full extent of chargeability for
TDEM sensors. Future measurements should focus on full-
waveform or frequency-domain analysis of soils known to
be problematic for pulsed-induction metal detectors and with
simultaneous characterization of magnetic properties. Prelim-
inary investigation of three such soils (Cross 2008) appears
to confirm magnetic viscosity as the key parameter with rel-
atively limited indication of significant electrical dispersion.
However, a more extensive study is obviously required to
yield broadly meaningful and representative conclusions.

CONCLUSIONS

While the principal role of magnetic viscosity in limiting the
performance of hand-held time domain electromagnetic sen-
sors is well established and confirmed by the present study,
it is also demonstrated that significant electrical dispersion
can lead to anomalous response characteristics within equiva-
lent time gates. Together with laboratory and in situ measure-

ments of frequency-dependent soil electromagnetic properties,
the foregoing theoretical framework provides an initial indi-
cation of the nature and relative extent of related soil influence
and potential implications for metal detector performance.

In practice, real-world soil heterogeneity and related spa-
tial variability of soil electromagnetic properties also give rise
to localized fluctuation of the background response or ‘soil
noise’ that can potentially emulate or mask the signatures
of landmines, UXO or other targets of interest. Ultimately,
a fuller evaluation of soil influence on metal detector per-
formance will require three-dimensional numerical modelling
and related statistical analysis for realistic soil electromagnetic
property distributions.
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APPENDIX A

χFD related to common dispersion models

In connection with measurement and characterization of soil
magnetic properties, the frequency dependence of magnetic
susceptibility is commonly quantified via the parameter

χF D = [(χLF − χHF )/χLF ] × 100, (A1)

where χLF and χHF denote low-frequency and high-frequency
susceptibility values, respectively and where related measure-
ment frequencies are separated by a decade. In particular,
χLF and χHF refer to the real-valued (in-phase) component χ ′

of the complex, frequency-dependent magnetic susceptibility
χ ( f ) = χ ( f ) − iχ ′′( f ) measured at frequencies fL = 465 Hz
and fH = 4.65 kHz, respectively, as employed by the de facto
standard Bartington MS2B susceptibility meter.

Figure A1 displays the relationship between χFD and
three well-established dispersion models. In addition to the
Chikazumi (originally Richter 1937 and also Frölich 1958)
model, associated with a log-uniform distribution of magnetic
time constants

Tχ (ln τ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0,

1/ ln(τ2/τ1)

0,

,

τ < τ1;

τ ≤ τ ≤ τ2,

τ > τ2

(A2)

relations are also depicted for a more natural log-normal time-
constant distribution (Wagner 1913)

Tχ (ln τ ) = b√
π

exp [−b2 ln2 (τ/τχ )], (A3)

and the common Cole-Cole relation (Cole and Cole 1941),
having effective logarithmic time-constant distribution

Tχ (ln τ ) = 1
2π

sin [(1 − c)π ]
cosh [c ln(τ/τχ )] − cos[(1 − c)π ]

. (A4)

In all cases, the time-constant distribution is symmetric
about a reference time-constant τχ , with breadth described
by related distribution parameters log(τ 2/τ 1), b and c, respec-
tively. Moreover, it is assumed for purposes of the present
analysis that τχ = 1/2π f̄ , where f̄ = 10(log fL+log fH)/2 denotes
the log-distributed mean measurement frequency (i.e., for fL =

Figure A1 Magnetic susceptibility dispersion parameter χFD as a
function of time-constant distribution parameters log (τ2/τ1) (log-
uniform), b−1 (log-normal) and c (Cole-Cole). The dashed lines link
corresponding parameter values for specific cases χFD = 56.1% and
χFD = 32.4% with corresponding time-constant and complex sus-
ceptibility spectra displayed in Figs A2 and A3, respectively.

465 Hz and fH = 4.65 kHz, f̄ ≈ 1.47 kHz and τχ = 1/2π f̄ ≈
1.08 × 10−4 s).

In general, the corresponding complex magnetic susceptibil-
ity follows from equation (25), with Tχ (τ ) = Tχ (ln τ )/τ . How-
ever, analytical evaluation is intractable for the log-normal
distribution and, consequently, discrete values of χFD as a
function of b are approximated on the basis of numerical re-
sults reported by Yager (1936) (see also Nowick and Berry
1961).

As indicated by Fig. A1, χFD approaches a theoretical limit
of approximately 90% as the distribution parameters ap-
proach log (τ 2/τ 1) = 0, 1/b = 0, c = 1.0 and the related com-
plex susceptibility spectra approach the Debye spectrum for
reference time-constant τχ (see Fig. 4). As the breadth of the
respective time-constant distributions increases, χFD decreases
in a non-linear fashion (e.g., χFD ≈ [ln(10)/χLF log(τ 2/τ 1)] ×
100 for log(τ 2/τ 1) > ∼ 3).

C© 2012 Crown in the right of Canada, Geophysical Prospecting, 1–20



TDEM dispersive soil electromagnetic properties 19

Figure A2 Time-constant distributions described by equations
(A2)–(A4) for log-uniform, log-normal and Cole-Cole models, re-
spectively. Related distributions for specific cases χFD = 56.1% and
χFD = 32.4%, with related parameters as indicated and identified in
Fig. A1.

For sake of illustration, Figs A2 and A3 display model
time-constant distributions and related susceptibility spectra
for exaggerated χFD values of 56.1% and 32.4%, and for
corresponding distribution parameters derived from Fig. A1.
In general, results demonstrate that as the relaxation time-
constant distribution becomes broader, related dispersion of
the corresponding magnetic susceptibility decreases. Mod-
elling also illustrates the idealized nature of the log-uniform
(Richter) time-constant model compared with the more nat-
ural log-normal (Wagner) distribution.A1 Moreover, it is ob-
served that the Cole-Cole model provides a useful approxima-
tion to the lognormal distribution with the advantage of an
associated analytical expression for corresponding complex
susceptibility.

A1It is noted that the corresponding grain volume distribution is more
fundamental and that related assumption of a log-normal volume
distribution implies a corresponding time-constant distribution that
is skewed toward larger relaxation times

Figure A3 Complex magnetic susceptibility spectra predicted for
time-constant distributions in Fig. A2 for specific cases χFD = 56.1%
and χFD = 32.4% and related distribution parameters as indicated.
Dashed lines define the range bounded by normalized measurement
frequencies 2π fLτχ and 2π fHτχ .

With regards to χFD, results confirm that for distribution
parameters indicated by Fig. A1, susceptibility spectra (par-
ticularly χ ′) arising for all three time-constant models are
in good agreement over the decade of frequency centred on
f̄ = 1/2πτχ and yield consistent estimates of χFD . In prac-
tice, the upper limit on χFD for soils is commonly accepted to
be roughly 15–20% (Dearing et al. 1996; Eyre 1997; Worm
1998; Muxworthy 2001) and, thus in theory, related mag-
netic time-constant distributions for natural soils are consid-
erably broader than depicted in Fig. A2, with corresponding
approximate parameter values log(τ 2/τ 1) > 10.0, 1/b > 12.5
(via extrapolation on values reported by Yager, 1936) and
c < 0.17.

That the extent of soil magnetic viscosity is generally
limited and that associated time-constant distributions are
correspondingly broad are reflections of inevitable natural
variability in the dimensions and geometry of constituent mag-
netic grains and the nature of thermally activated demagne-
tization. Because the related relaxation time-constant for a
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single-domain grain is exponentially dependent on the ratio
of volume to temperature, even a relatively narrow distribu-
tion of grain volumes yields a comparatively enormous span
in the corresponding time-constant distribution (see Nagata
1961; Dunlop and Özdemir, 1997).

With regards to the influence of soil magnetic dispersion on
TDEM sensors and related assessment, the principal implica-
tion is that log-linear susceptibility dispersion is the general
expectation and that standard dual-frequency measurements
are likely sufficient for the bulk of natural soils at typical op-
erating frequencies. However, to emphasize the limitations of
the foregoing analysis and to provide additional insight on χFD

as a measure of magnetic dispersion, we offer the following
further observations.

As previously noted, the susceptibility spectra in Fig. A3
are centred with respect to standard measurement frequencies
by referring associated time-constant distributions (Fig. A2)
to relaxation time τχ = 1/2π f̄ . In general, shifting the time-
constant distribution toward lesser time-constants yields an
effective decrease in χFD, initially due to normalization by
larger χLF and subsequently to increasing non-linearity of the
nominally log-linear spectrum. A similar shift toward larger

time-constants has the opposite effect. Moreover, for time-
constant distributions bracketing τχ and having sufficient
bandwidth, it is notable that a lower limiting time-constant τ 1

has controlling influence on χFD . In effect, χFD fails to reflect
the full extent of viscosity associated with larger grain vol-
umes and correspondingly longer relaxation times. Finally,
while Fig. A1 implies that χFD ultimately vanishes with in-
finite time-constant bandwidth, it should be appreciated that
the intrinsic atomic reorganization interval, τ 0 > 10−12 (Dear-
ing et al. 1996; Worm 1998), imposes a practical lower limit
on τ 1 and, in turn, on χFD.

Consequently, in addition to a broad time-constant
distribution, other considerations including the volume-
dependence of stable single-domain and superparamagnetic
susceptibility, micro-coercivity variation, magnetic grain in-
teraction and the influence of non-dispersive magnetic frac-
tions are required to explain the full range of empirical χFD

values (Forster et al. 1994; Dearing et al. 1996; Eyre 1997;
Worm 1998; Muxworthy 2001)

For the assessment of soil magnetic influence on TDEM
sensors, however, it is emphasized that magnetic viscosity ν ≈
(χLF − χHF)/ log(fH/fL) is the preferred parameter.
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